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Inertance in aortic flow
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Womersley’s theory for pulsating flow in straight rigid tubes
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Governing equation (2):
linear partial differential equation (P.D.E.) for the velocity v(r,{)

where V= fat is the kinematic viscosity of the fluid
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Assume that the pressure gradient is function of time only and not a function of the radius, r: 8_ # f(r)
X

Solution:

The governing equation (2) is linear: the general solution can be a linear superposition of other solutions. This is useful for the treatment of periodic
pressure gradient functions.

Express the pressure gradient in terms of a Fourier series:
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For arterial pulses:

* 5 to 10 harmonics suffice to describe the pulse.

» The amplitude of higher frequency harmonics is too
small and can be neglected without introducing much
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error.
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Strateqgy:

* The solution for the zero-order harmonic is obviously Poiseuille’s law.
* We need to find the solution for a single harmonic pressure gradient.
» The general solution would be then a linear addition of Poiseuille’s solution for the zero-order term plus the solution for each harmonic.

For a single harmonic: ~ = Acos(wt)+ Bsin(wt) = Re[(A—iB)(coswt + isinmt)]| = Re[ 4 €]
where: A" = A—iB is a complex pressure gradient
and A e is a complex oscillatory pressure gradient
AP 9P

Approach: Replace = 5 in the governing equation (2) by 472 and keep the real part of the solution
X
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Let us now assume that the solution to Eq. (3) is given by a complex velocity v*(r,t) of the form: v*(r,t) = u(r)ei“”
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Substituting into Eq. (3) and dividing by eiwt we obtain:

*

e T rdr v 1 = a*  rdr U=-— (4) constant term on the right hand side

du ldu i A d’u 1du 13_60 A linear 2nd order differential equation with a
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We first seek a general solution to the homogeneous equation: ﬂ + l@ + gu =0 (5)
dr* rdr v

General solution of Eq. (4) = General solution of homogenous Eq. (5) + Particular solution of Eq. (4)
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General solution of homogenous equation ﬂ + l@ + ﬂu =0 is: u= ClJo(lr) where 12 = ro
dr* rdr v T 1%
Bessel function of order O
2 .3 *
For the particular solution, we set u = C2, and substituting into Eq. (4) d—3+l@+ﬂu = A4
dr= rdr v u
3 * * * *
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The general solution becomes: u(r)= CIJO(;LF) -3 (6)
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The constant Cs can be evaluated by application of the non-slip boundary condition at the wall: u(ro) =0 = C1 ==
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We may now define the dimensionless Womersley parameter alpha (a) as o=r

Rewrite Eq. (7) as

The final solution for the velocity is the real part of

v
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Velocity profile for a single harmonic
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Pulsatile flow profiles
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Velocity profiles & phase shift
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150° 1. The velocity profile shows that not all points
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2. The phase shift, 8, between the velocity v(r,t)
and the pressure gradient AP/I(t) is given in the
figure on the left.

3. For high Womersley numbers, i.e., for inertia-
dominated flows, the phase shift tends to —90
degrees, which means that velocity lags
pressure gradient by 90 degrees.

Déphasage B (Degrés)




Relation of flow to pressure gradient
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Eq. 9 can be written as: o)= 60/; MT[1-F, Jsin(wt + @)
We express [1- F10] in terms of its modulus (M},) and phase (&,,), to obtain:
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To allow comparison with Poiseuille’s equation, we substitute for o = -
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Physical meaning of Womersley parameter a
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Womersley parameter and viscous layer thickness
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At interface forces should be equal: polU = MU/52 =0 = Mo \/z
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Ratio of tube radius to viscous layer thickness: = — =0 Conclusion: when aT = 6§
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Pulsatile flow profiles (measurements)
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