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Womersley’s theory for pulsating flow in straight rigid tubes
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Womersley’s theory for pulsating flow in straight rigid tubes 

 
Governing equation 
Consider pulsating flow in a straight rigid tube and an annular fluid element of length dx, as 
shown in Figure 1. Forces due to pressure and fluid shear are shown.  

 
Assuming uniform flow (1

st
 assumption), the balance of forces acting on the fluid element in the x-

direction yields: 
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If we further assume that the fluid in Newtonian (2

nd
 assumption): 
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 (the minus sign comes from the imposed shear stress direction) 

 

Substituting for τ in Eq. (1), we obtain: 
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where 
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#
 is the kinematic viscosity of the fluid. At this point we make the 3

rd
 (logical) 

assumption, stating that the pressure gradient is function of time only and not a function of the 
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higher order term 
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Assume that the pressure gradient is function of time only and not a function of the radius, r: 
∂ P
∂ x

≠ f (r)

Governing equation (2): 
linear partial differential equation (P.D.E.) for the velocity v(r,t)

Solution: 

The governing equation (2) is linear: the general solution can be a linear superposition of other solutions. This is useful for the treatment of periodic 
pressure gradient functions. 
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radius, r: 
  

! 
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"x
# f (r ) . Eq. (2) is therefore a linear partial differential equation (P.D.E.) for the time 

and radius dependent velocity v(r,t). 
 
 
Solution 
Equation 2 is linear, which means the general solution can be a linear superposition of other 
solutions. This is useful for the treatment of periodic pressure gradient functions.  

 

So, if we assume (4
th

 assumption) that the pressure gradient 
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with period T, as shown in the figure above, we can express the pressure gradient in terms of a 
Fourier series: 
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 is the circular frequency. For arterial pulses, it is in general true that 5 to 10 harmonics 

suffice to describe the pulse. The amplitude of higher frequency harmonics is too small and can 
be neglected without introducing much error. 
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Express the pressure gradient in terms of a Fourier series:  

ΔP
ℓ

= A0 + A1 cos(ωt)+ B1 sin(ωt)+ A2 cos(2ωt)+ B2 sin(2ωt)+ ...

ΔP
ℓ

= M0 + M1 cos(ωt +ϕ1)+ M2 cos(ωt +ϕ2 )+ ...or

where M0 = A0 Mi = Ai
2 + Bi

2 tanϕ i = −
Bi
Ai

and

ω = 2π
T

is the circular frequency



For arterial pulses:  
• 5 to 10 harmonics suffice to describe the pulse.  
• The amplitude of higher frequency harmonics is too 

small and can be neglected without introducing much 
error. 
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Strategy: 

• The solution for the zero-order harmonic is obviously Poiseuille’s law.  
• We need to find the solution for a single harmonic pressure gradient.  
• The general solution would be then a linear addition of Poiseuille’s solution for the zero-order term plus the solution for each harmonic.  

For a single harmonic: ΔP
ℓ

= Acos(ωt)+ Bsin(ωt) = Re[(A− iB)(cosωt + isinωt)]= Re[A*eiωt ]

A* = A− iBwhere: is a complex pressure gradient  
and A*eiωt is a complex oscillatory pressure gradient  

A*eiωtApproach: Replace ΔP
ℓ

= − ∂ P
∂ x

in the governing equation (2) by and keep the real part of the solution 
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Let us now assume that the solution to Eq. (3) is given by a complex velocity v*(r,t) of the form: v*(r,t) = u(r)eiωt
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constant term on the right hand side

We first seek a general solution to the homogeneous equation: d 2u
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General solution of Eq. (4) = General solution of homogenous Eq. (5) + Particular solution of Eq. (4)  

(5)
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We may now define the dimensionless Womersley parameter alpha (α) as α = ro
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The final solution for the velocity is the real part of v*(r,t) = u(r)eiωt
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Velocity profile for a single harmonic



Pulsatile flow profiles
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Velocity profiles & phase shift

Remarks: 

1. The velocity profile shows that not all points 
along the radius move in phase

2. The phase shift, β, between the velocity v(r,t) 
and the pressure gradient ΔP/l(t) is given in the 
figure on the left. 

3. For high Womersley numbers, i.e., for inertia-
dominated flows, the phase shift tends to –90 
degrees, which means that velocity lags 
pressure gradient by 90 degrees.



Relation of flow to pressure gradient

Q(t) = v(r,t) ⋅2πr dr
0
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Womersley named the complex term in the parenthesis 1-F10:

The real part of the pressure gradient is written as

(9)

Eq. 9 can be written as: Q(t) =
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Poisseuille’s law



Physical meaning of Womersley parameter α 
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x-momentum (Navier-Stokes)



Womersley parameter and viscous layer thickness 

δ viscous forces (       ) dominate

inertia forces (          ) dominate

At interface forces should be equal:
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=αRatio of tube radius to viscous layer thickness:
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Conclusion: when α ↑ ⇒ δ ↓



Pulsatile flow profiles (measurements)


