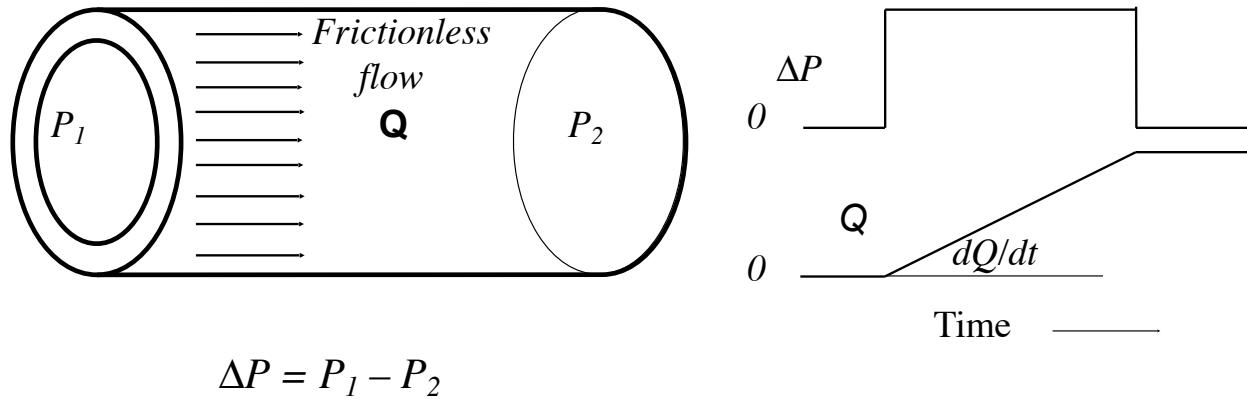


Inertance



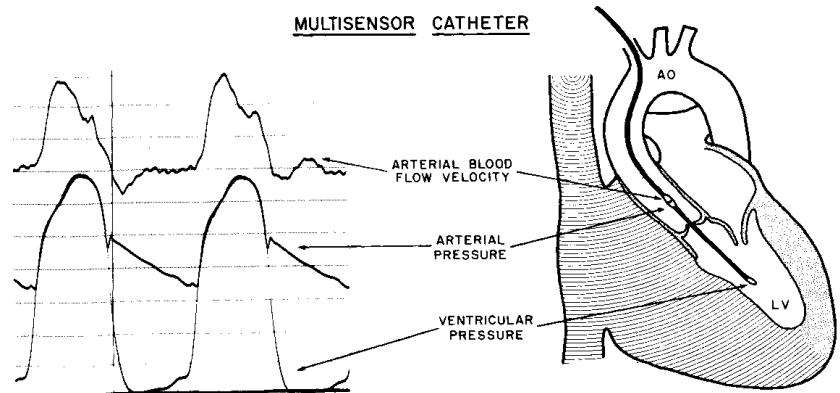
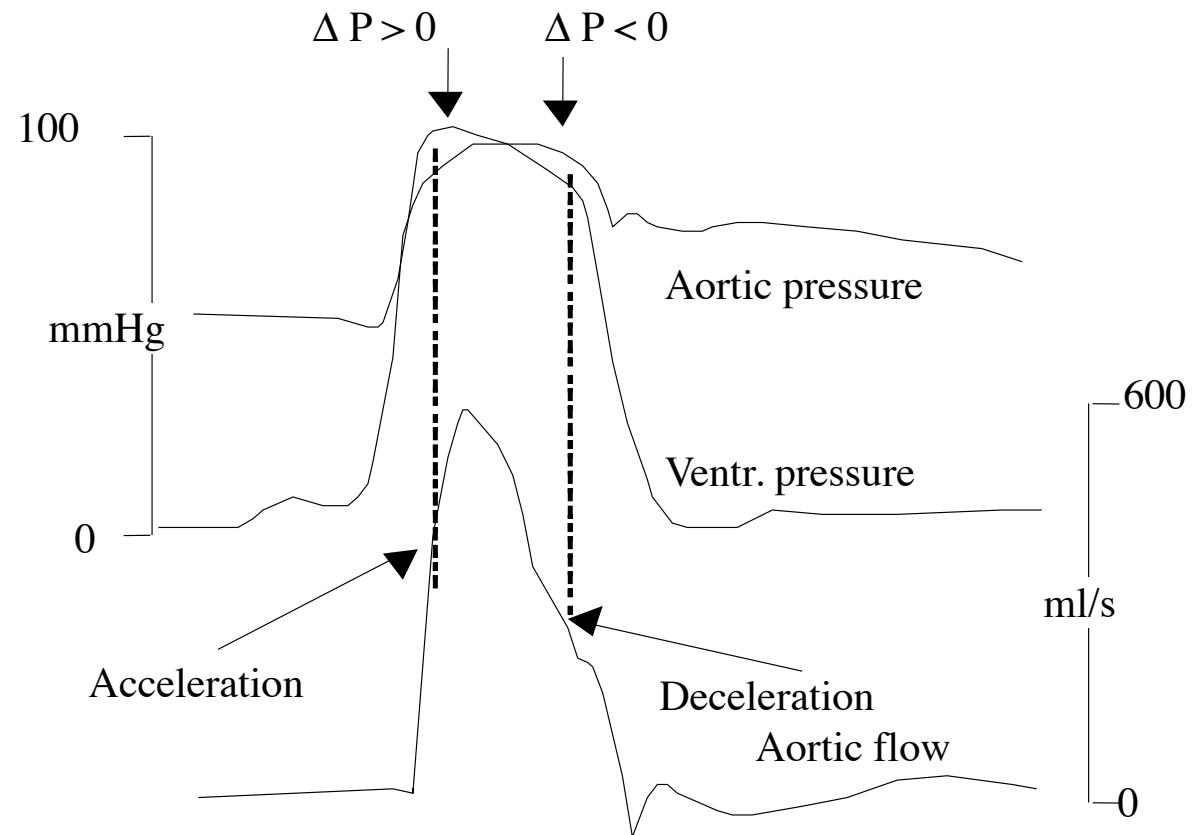
$$F = m \cdot \frac{dv}{dt}$$

$$(P_1 - P_2)A = \rho \ell A \cdot \frac{dv}{dt} = \rho \ell \cdot \frac{dQ}{dt}$$

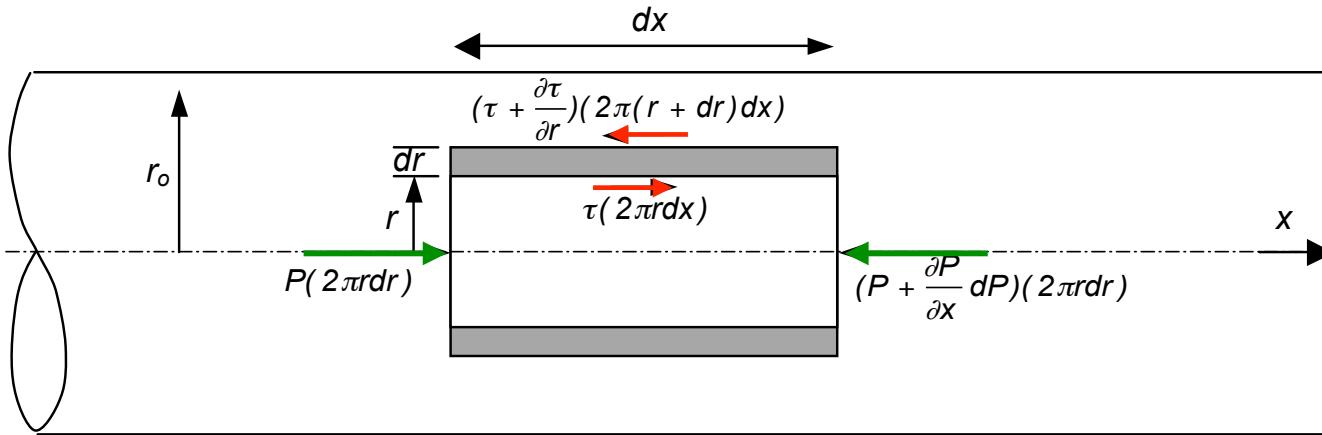
$$P_1 - P_2 = \frac{\rho \ell}{A} \cdot \frac{dQ}{dt} = L \cdot \frac{dQ}{dt}$$

$$\text{Inertance} \quad L = \frac{\rho \ell}{A}$$

Inertance in aortic flow



Womersley's theory for pulsating flow in straight rigid tubes



$$\text{Newton's 2nd law: } F_x = m \cdot a_x$$

$$\Rightarrow P(2\pi r dr) - (P + \frac{\partial P}{\partial x} dx)(2\pi r dr) + \tau(2\pi r dx) - (\tau + \frac{\partial \tau}{\partial r} dr)(2\pi(r + dr)dx) = \rho(2\pi r dr dx) \frac{\partial v}{\partial t}$$

higher order term

$$\Rightarrow -\frac{\partial P}{\partial x} 2\pi r dr dx - \tau 2\pi dr dx - \frac{\partial \tau}{\partial r} 2\pi r dr dx - \frac{\partial \tau}{\partial r} 2\pi dr^2 dx = \rho(2\pi r dr dx) \frac{\partial v}{\partial t}$$

$$\Rightarrow -\frac{\partial P}{\partial x} r - \tau - \frac{\partial \tau}{\partial r} r = \rho r \frac{\partial v}{\partial t}$$

$$\Rightarrow -\frac{\partial P}{\partial x} - \frac{\tau}{r} - \frac{\partial \tau}{\partial r} = \rho \frac{\partial v}{\partial t} \quad (1)$$

For Newtonian fluid: $\tau = -\mu \frac{\partial v}{\partial r}$

$$-\frac{\partial P}{\partial x} + \frac{\mu}{r} \frac{\partial v}{\partial r} + \mu \frac{\partial^2 v}{\partial r^2} = \rho \frac{\partial v}{\partial t}$$

$$\Rightarrow \frac{\partial^2 v}{\partial r^2} + \frac{1}{r} \frac{\partial v}{\partial r} - \frac{1}{\rho} \frac{\partial v}{\partial t} = \frac{1}{\mu} \frac{\partial P}{\partial x}$$

(2)

Governing equation (2):
linear partial differential equation (P.D.E.) for the velocity $v(r, t)$

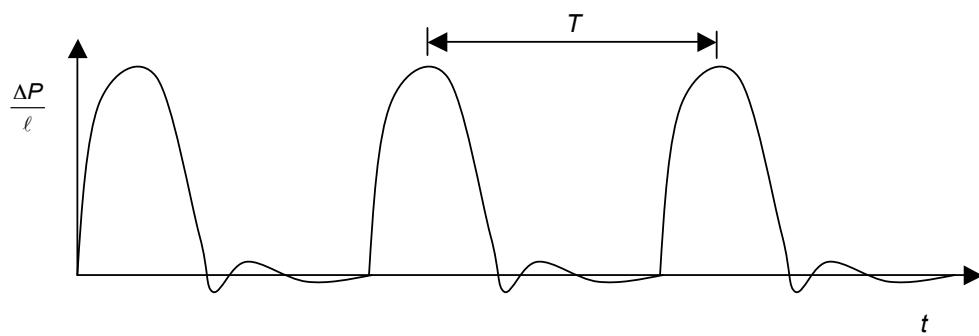
where $\nu = \frac{\mu}{\rho}$ is the kinematic viscosity of the fluid

Assume that the pressure gradient is function of time only and not a function of the radius, r :

$$\frac{\partial P}{\partial x} \neq f(r)$$

Solution:

The governing equation (2) is linear: the general solution can be a linear superposition of other solutions. This is useful for the treatment of **periodic pressure gradient functions**.



Express the pressure gradient in terms of a Fourier series:

$$\frac{\Delta P}{\ell} = A_0 + A_1 \cos(\omega t) + B_1 \sin(\omega t) + A_2 \cos(2\omega t) + B_2 \sin(2\omega t) + \dots$$

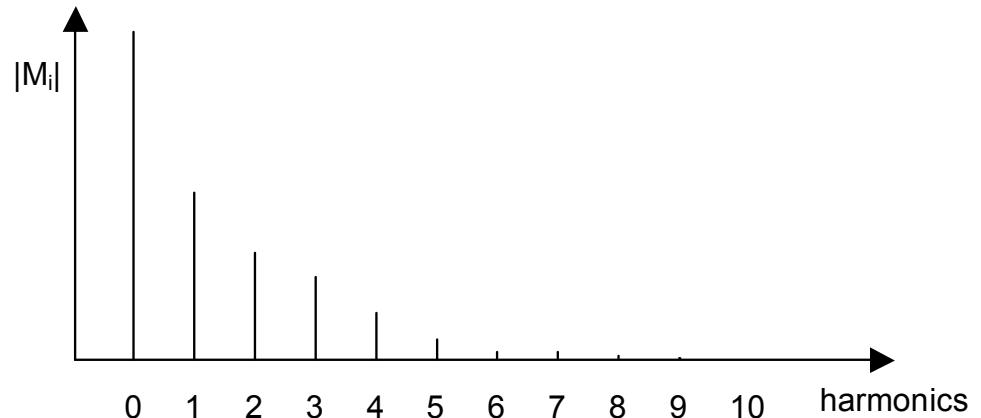
$$\text{or } \frac{\Delta P}{\ell} = M_0 + M_1 \cos(\omega t + \varphi_1) + M_2 \cos(\omega t + \varphi_2) + \dots$$

$$\text{where } M_0 = A_0 \quad M_i = \sqrt{A_i^2 + B_i^2} \quad \text{and} \quad \tan \varphi_i = -\frac{B_i}{A_i}$$

$$\omega = \frac{2\pi}{T} \quad \text{is the circular frequency}$$

For arterial pulses:

- 5 to 10 harmonics suffice to describe the pulse.
- The amplitude of higher frequency harmonics is too small and can be neglected without introducing much error.



Strategy:

- The solution for the zero-order harmonic is obviously Poiseuille's law.
- We need to find the solution for a single harmonic pressure gradient.
- The **general solution** would be then a **linear addition of Poiseuille's solution for the zero-order term plus the solution for each harmonic**.

For a single harmonic:
$$\frac{\Delta P}{\ell} = A \cos(\omega t) + B \sin(\omega t) = \operatorname{Re}[(A - iB)(\cos \omega t + i \sin \omega t)] = \operatorname{Re}[A^* e^{i\omega t}]$$

where: $A^* = A - iB$ is a complex pressure gradient

and $A^* e^{i\omega t}$ is a complex oscillatory pressure gradient

Approach: Replace $\frac{\Delta P}{\ell} = -\frac{\partial P}{\partial x}$ in the governing equation (2) by $A^* e^{i\omega t}$ and **keep the real part of the solution**

$$\frac{\partial^2 v}{\partial r^2} + \frac{1}{r} \frac{\partial v}{\partial r} - \frac{1}{v} \frac{\partial v}{\partial t} = \frac{1}{\mu} \frac{\partial P}{\partial x} \quad \text{now becomes} \quad \frac{\partial^2 v}{\partial r^2} + \frac{1}{r} \frac{\partial v}{\partial r} - \frac{1}{v} \frac{\partial v}{\partial t} = -\frac{A^*}{\mu} e^{i\omega t} \quad (3)$$

Let us now assume that the solution to Eq. (3) is given by a complex velocity $v^*(r,t)$ of the form: $v^*(r,t) = u(r)e^{i\omega t}$

$$\frac{\partial v^*}{\partial t} = i\omega u e^{i\omega t} \quad \frac{\partial v^*}{\partial r} = \frac{du}{dr} e^{i\omega t} \quad \frac{\partial^2 v^*}{\partial r^2} = \frac{d^2 u}{dr^2} e^{i\omega t}$$

Substituting into Eq. (3) and dividing by $e^{i\omega t}$ we obtain:

$$\frac{d^2 u}{dr^2} + \frac{1}{r} \frac{du}{dr} - \frac{i\omega}{v} u = -\frac{A^*}{\mu} \quad \Rightarrow \frac{d^2 u}{dr^2} + \frac{1}{r} \frac{du}{dr} + \frac{i^3 \omega}{v} u = -\frac{A^*}{\mu} \quad (4)$$

linear 2nd order differential equation with a constant term on the right hand side

We first seek a general solution to the **homogeneous equation**:

$$\boxed{\frac{d^2 u}{dr^2} + \frac{1}{r} \frac{du}{dr} + \frac{i^3 \omega}{v} u = 0} \quad (5)$$

General solution of Eq. (4) = General solution of homogenous Eq. (5) + Particular solution of Eq. (4)

General solution of homogenous equation

$$\frac{d^2u}{dr^2} + \frac{1}{r} \frac{du}{dr} + \frac{i^3 \omega}{v} u = 0 \quad \text{is:} \quad u = C_1 J_o(\lambda r) \quad \text{where} \quad \lambda^2 = \frac{i^3 \omega}{v}$$

↑
Bessel function of order 0

For the **particular solution**, we set $u = C_2$, and substituting into Eq. (4)

$$\frac{d^2u}{dr^2} + \frac{1}{r} \frac{du}{dr} + \frac{i^3 \omega}{v} u = -\frac{A^*}{\mu}$$

$$\text{we obtain: } \frac{i^3 \omega C_2}{v} = -\frac{A^*}{\mu}$$

$$\Rightarrow C_2 = -\frac{A^*}{\mu} \frac{v}{i^3 \omega} = -\frac{A^*}{\mu} \frac{\mu}{i^3 \rho \omega} = -\frac{A^*}{i^3 \rho \omega}$$

The general solution becomes:

$$u(r) = C_1 J_o(\lambda r) - \frac{A^*}{i^3 \rho \omega} \quad (6)$$

$$\text{The constant } C_1 \text{ can be evaluated by application of the non-slip boundary condition at the wall: } u(r_o) = 0 \Rightarrow C_1 = \frac{A^*}{i^3 \rho \omega} \frac{1}{J_o(\lambda r_o)}$$

$$\text{Finally, the general solution is: } u(r) = \frac{A^*}{i^3 \rho \omega} \left[\frac{J_o(\lambda r)}{J_o(\lambda r_o)} - 1 \right] \quad \text{or, using } \lambda^2 = \frac{i^3 \omega}{v}$$

$$u(r) = \frac{A^*}{i \rho \omega} \left[1 - \frac{J_o(r \sqrt{\frac{\omega}{v}} \cdot i^{3/2})}{J_o(r_o \sqrt{\frac{\omega}{v}} \cdot i^{3/2})} \right] \quad (7)$$

We may now define the dimensionless **Womersley parameter alpha (α)** as

$$\alpha = r_o \sqrt{\frac{\omega}{\nu}} = r_o \sqrt{\frac{\omega \rho}{\mu}}$$

Rewrite Eq. (7) as

$$u(r) = \frac{A^*}{i\rho\omega} \left[1 - \frac{J_o\left(\frac{r}{r_o} \alpha \cdot i^{3/2}\right)}{J_o(\alpha \cdot i^{3/2})} \right] \quad (8)$$

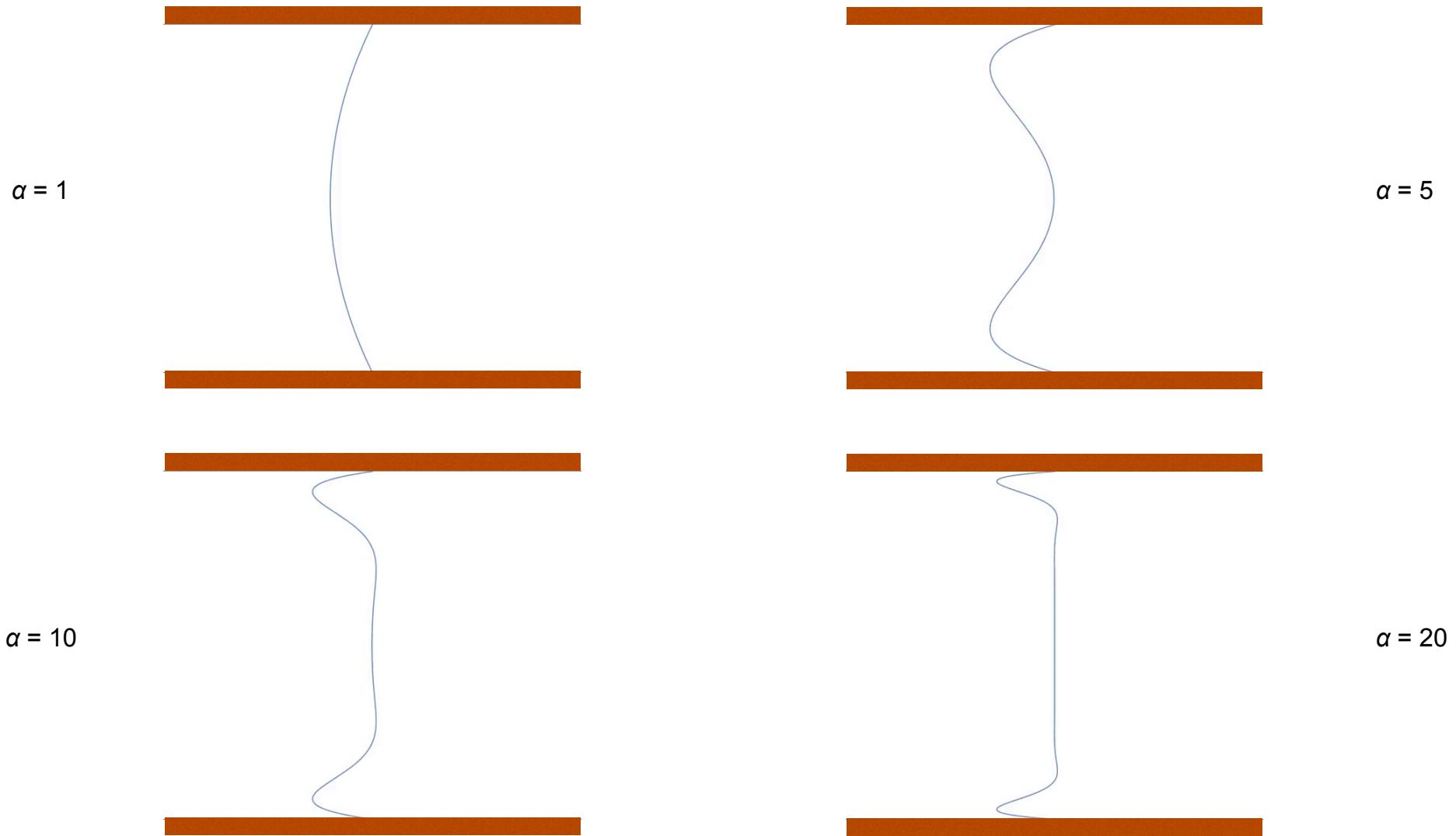
The final solution for the velocity is the real part of

$$v^*(r, t) = u(r) e^{i\omega t}$$

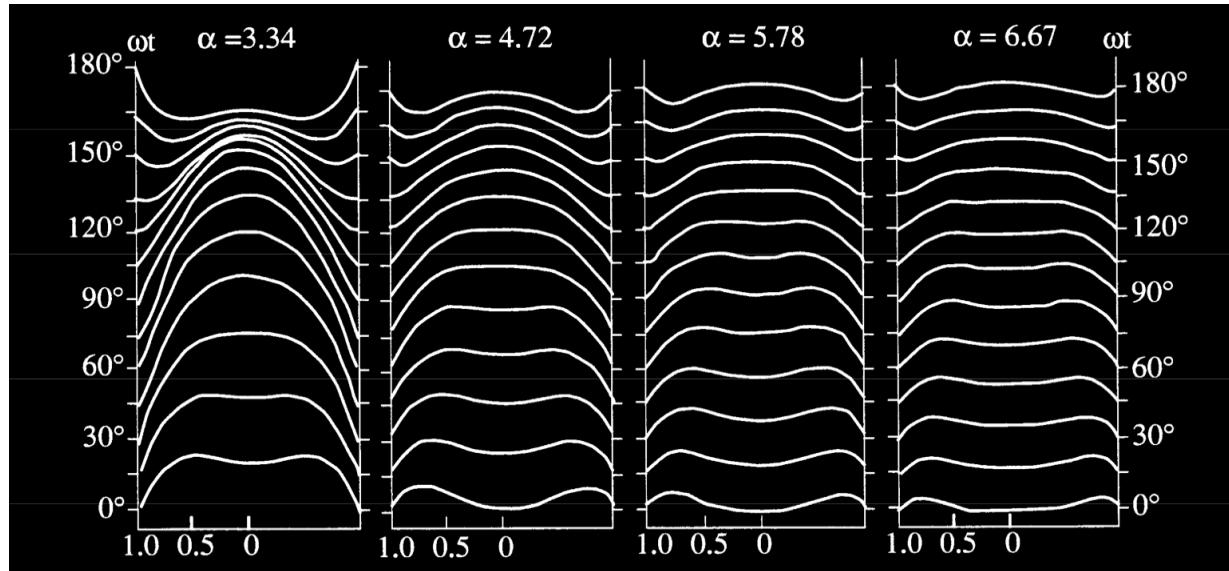
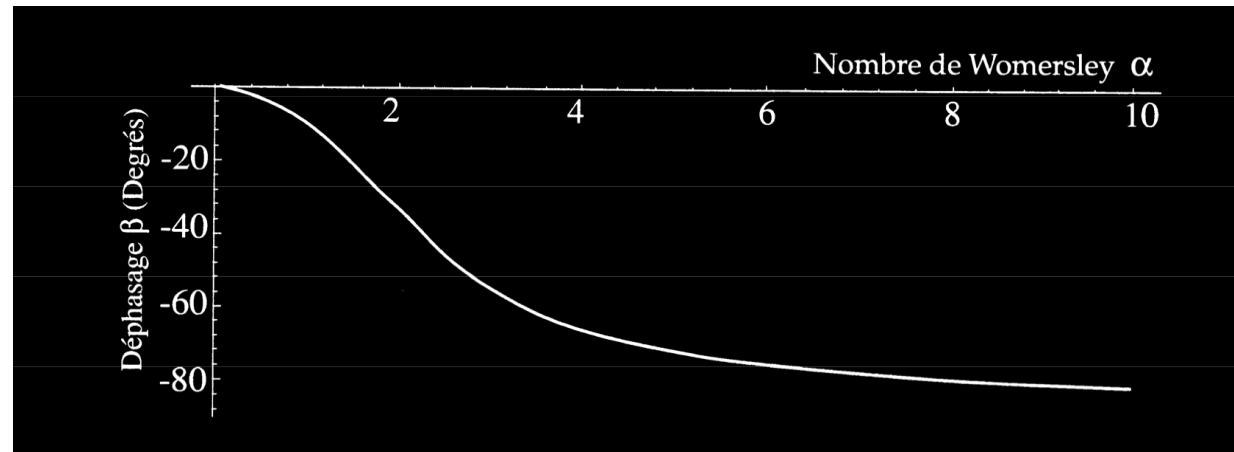
$$v(r, t) = \text{Re} \left[\frac{A^*}{i\rho\omega} \left[1 - \frac{J_o\left(\frac{r}{r_o} \alpha \cdot i^{3/2}\right)}{J_o(\alpha \cdot i^{3/2})} \right] e^{i\omega t} \right]$$

Velocity profile for a single harmonic

Pulsatile flow profiles



Velocity profiles & phase shift



Remarks:

1. The velocity profile shows that not all points along the radius move in phase
2. The phase shift, β , between the velocity $v(r,t)$ and the pressure gradient $\Delta P/l(t)$ is given in the figure on the left.
3. For high Womersley numbers, i.e., for inertia-dominated flows, the phase shift tends to -90 degrees, which means that velocity lags pressure gradient by 90 degrees.

Relation of flow to pressure gradient

$$Q(t) = \int_0^{r_o} v(r, t) \cdot 2\pi r dr \Rightarrow Q(t) = \frac{\pi r_o^2 A^*}{i\omega\rho} \left(1 - \frac{2J_1(\alpha i^{3/2})}{\alpha i^{3/2} J_0(\alpha i^{3/2})} \right) e^{i\omega t} \quad (9)$$

Womersley named the complex term in the parenthesis $1-F_{10}$: $1-F_{10} = 1 - \frac{2J_1(\alpha i^{3/2})}{\alpha i^{3/2} J_0(\alpha i^{3/2})}$

The real part of the pressure gradient is written as $\frac{\Delta P}{\ell} = M \cos(\omega t + \varphi)$

$$\text{Eq. 9 can be written as: } Q(t) = \frac{\pi r_o^2}{\omega\rho} M [1 - F_{10}] \sin(\omega t + \varphi)$$

We express $[1 - F_{10}]$ in terms of its modulus (M'_{10}) and phase (ε_{10}), to obtain:

$$Q(t) = \frac{\pi r_o^2}{\omega\rho} M M'_{10} \sin(\omega t + \varphi + \varepsilon_{10})$$

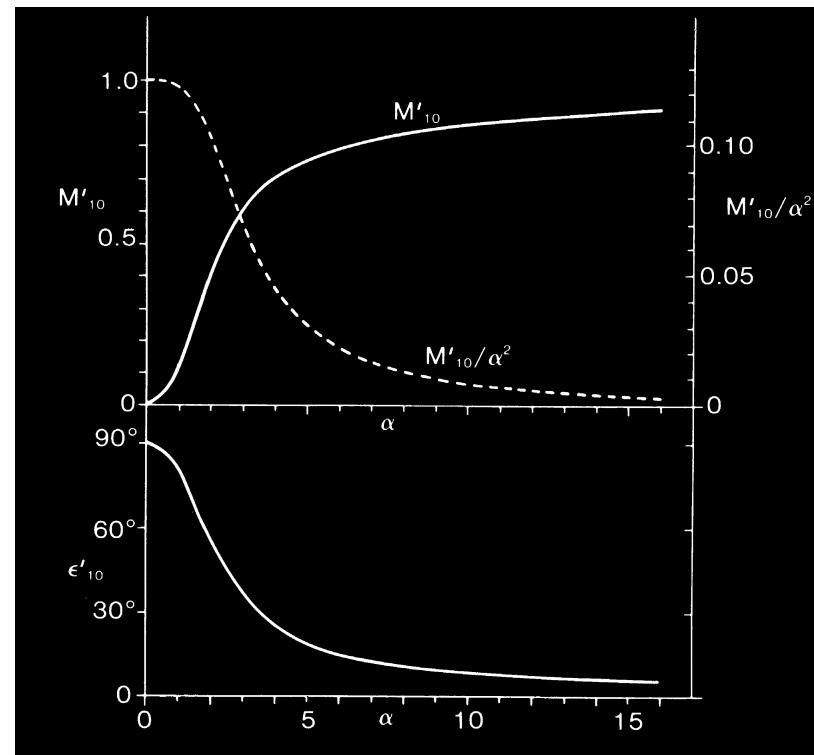
To allow comparison with Poiseuille's equation, we substitute for $\alpha^2 = \frac{r_o^2 \omega \rho}{\mu}$

$$Q(t) = \frac{\pi r_o^4}{\mu} M \frac{M'_{10}}{\alpha^2} \sin(\omega t + \varphi + \varepsilon_{10})$$

Note: as $\alpha \rightarrow 0$, $\frac{M'_{10}}{\alpha^2} \rightarrow \frac{1}{8}$ and $\varepsilon_{10} \rightarrow 90^\circ$ so that

$$Q(t) = \frac{\pi r_o^4}{8\mu} M \cos(\omega t + \varphi)$$

Poiseuille's law



Physical meaning of Womersley parameter α

$$\underbrace{\rho \frac{\partial U_i}{\partial t} + \rho U_j \frac{\partial U_i}{\partial x_j}}_{\text{transient inertia}} + \underbrace{\rho U_j \frac{\partial U_i}{\partial x_j}}_{\text{convective inertia}} + \underbrace{X_i}_{\text{body force}} - \underbrace{\frac{\partial p}{\partial x_i}}_{\text{pressure force}} + \underbrace{\mu \left(\frac{\partial^2 U_i}{\partial x_i^2} + \frac{\partial^2 U_i}{\partial x_j^2} + \frac{\partial^2 U_i}{\partial x_k^2} \right)}_{\text{viscous force}} = \text{x-momentum (Navier-Stokes)}$$

R = characteristic length (radius)

ω = characteristic frequency (1/characteristic time)

U = characteristic velocity

For a harmonic velocity:

$$u = U \cdot \sin \omega t$$

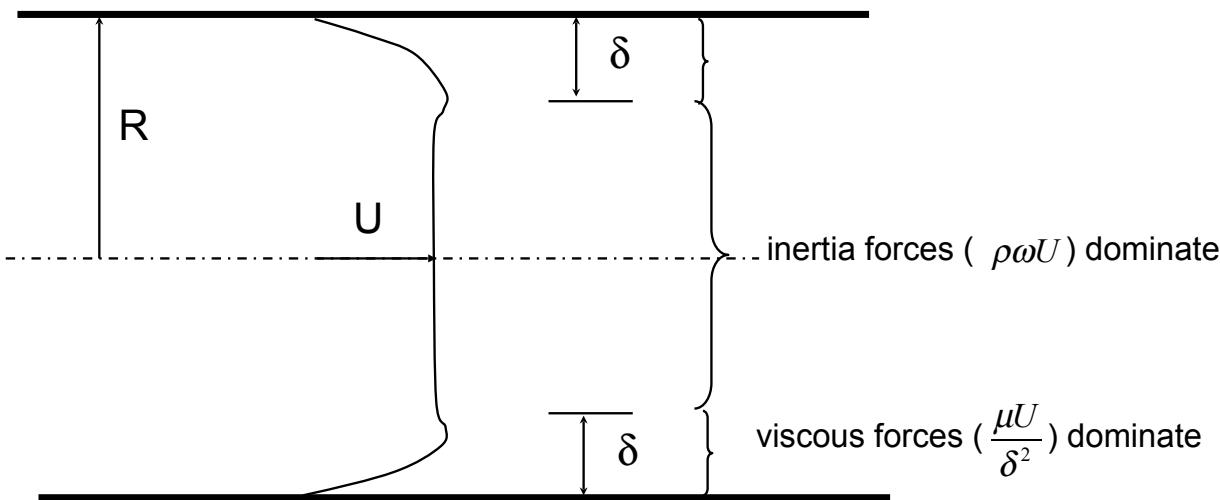
Order of magnitude:

$$\frac{\partial u}{\partial t} = U \cdot \omega \cdot \cos \omega t \sim U \cdot \omega$$

$$\frac{\partial^2 u}{\partial x^2} \sim \frac{U}{R^2}$$

$$\frac{\text{transient inertia force}}{\text{viscous force}} = \frac{\rho \frac{\partial u}{\partial t}}{\mu \frac{\partial^2 u}{\partial x^2}} \approx \frac{\rho \omega U}{\mu U} = \frac{\omega R^2}{\frac{\mu}{\rho}} = \frac{\omega R^2}{\nu} = \alpha^2$$

Womersley parameter and viscous layer thickness



At interface forces should be equal:

$$\rho\omega U = \mu U / \delta^2 \Rightarrow \delta = \sqrt{\frac{\mu}{\rho\omega}} = \sqrt{\frac{v}{\omega}}$$

Ratio of tube radius to viscous layer thickness:

$$\frac{R}{\delta} = R \sqrt{\frac{\omega}{v}} = \alpha$$

Conclusion: when $\alpha \uparrow \Rightarrow \delta \downarrow$

Pulsatile flow profiles (measurements)

